资源类型

期刊论文 115

年份

2023 19

2022 8

2021 13

2020 12

2019 5

2018 3

2017 7

2016 6

2015 14

2014 5

2013 3

2012 4

2011 2

2010 4

2008 3

2007 4

2004 1

展开 ︾

关键词

Cu(In 4

Ga)Se2 3

纳米颗粒 2

Cu(Inx 1

Ga)Se2光伏组件 1

Ga1–x)Se2 1

Ni–Ti–Cu–V合金 1

PDT 1

V-W-Mo-Cu催化剂 1

井壁稳定 1

低温 1

侵入岩;铜镍硫化物矿床;小岩体成大矿;矿床成因;找矿远景 1

储氢材料 1

克努森蒸发源 1

再生 1

凝结 1

制备工艺 1

加氢 1

化学机械抛光 1

展开 ︾

检索范围:

排序: 展示方式:

Application of Cu nanoparticles as N32 base oil additives

Qiang HE, Jun YE, Hongzhao LIU, Jinling LI,

《机械工程前沿(英文)》 2010年 第5卷 第1期   页码 93-97 doi: 10.1007/s11465-009-0083-0

摘要: Cu nanoparticles as N32 base oil additives are studied in the paper and their structure is characterized by transmission electron microscopy (TEM) and X-ray powder diffraction spectroscopy (XRD). The widely used steel-steel friction system is chosen to test the feasibility and practicality of Cu nanoparticles as bearing lubricant additives. The results show that N32 base oil with 0.5% Cu nanoparticle can improve the test sample contact fatigue life than pure N32 base oil.

关键词: Cu nanoparticle     tribological property     contact fatigue     weibull distribution    

Performance of iron-air battery with iron nanoparticle-encapsulated C–N composite electrode

《能源前沿(英文)》 doi: 10.1007/s11708-023-0913-5

摘要: Highly efficient and stable iron electrodes are of great significant to the development of iron-air battery (IAB). In this paper, iron nanoparticle-encapsulated C–N composite (NanoFe@CN) was synthesized by pyrolysis using polyaniline as the C–N source. Electrochemical performance of the NanoFe@CN in different electrolytes (alkaline, neutral, and quasi-neutral) was investigated via cyclic voltammetry (CV). The IAB was assembled with NanoFe@CN as the anode and IrO2 + Pt/C as the cathode. The effects of different discharging/charging current densities and electrolytes on the battery performance were also studied. Neutral K2SO4 electrolyte can effectively suppress the passivation of iron electrode, and the battery showed a good cycling stability during 180 charging/discharging cycles. Compared to the pure nano-iron (NanoFe) battery, the NanoFe@CN battery has a more stable cycling stability either in KOH or NH4Cl + KCl electrolyte.

关键词: energy storage and conversion     metallic composites     nanocomposites     iron-air battery     iron anode    

Effect of noble metal nanoparticle size on C–N bond cleavage performance in hydrodenitrogenation: a study

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 1986-2000 doi: 10.1007/s11705-023-2337-5

摘要: Breakage of the C–N bond is a structure sensitive process, and the catalyst size significantly affects its activity. On the active metal nanoparticle scale, the role of catalyst size in C–N bond cleavage has not been clearly elucidated. So, Ru catalysts with variable nanoparticle sizes were obtained by modulating the reduction temperature, and the catalytic activity was evaluated using 1,2,3,4-tetrahydroquinoline and o-propylaniline with different C–N bond hybridization patterns as reactants. Results showed a 13 times higher reaction rate for sp3-hybridized C–N bond cleavage than sp2-hybridized C–N bond cleavage, while the reaction rate tended to increase first and then decrease as the catalyst nanoparticle size increased. Different concentrations of terrace, step, and corner sites were found in different sizes of Ru nanoparticles. The relationship between catalytic site variation and C–N bond cleavage activity was further investigated by calculating the turnover frequency values for each site. This analysis indicates that the variation of different sites on the catalyst is the intrinsic factor of the size dependence of C–N bond cleavage activity, and the step atoms are the active sites for the C–N bond cleavage. When Ru nanoparticles are smaller than 1.9 nm, they have a strong adsorption effect on the reactants, which will affect the catalytic performance of the Ru catalyst. Furthermore, these findings were also confirmed on other metallic Pd/Pt catalysts. The role of step sites in C–N bond cleavage was proposed using the density function theory calculations. The reactants have stronger adsorption energies on the step atoms, and step atoms have d-band center nearer to the Fermi level. In this case, the interaction with the reactant is stronger, which is beneficial for activating the C–N bond of the reactant.

关键词: sp3/sp2-hybridized C–N bond     noble metal nanoparticle     catalytic active site     turnover frequency     DFT    

Iron oxide nanoparticle-based theranostics for cancer imaging and therapy

Xiaoqing REN,Hongwei CHEN,Victor YANG,Duxin SUN

《化学科学与工程前沿(英文)》 2014年 第8卷 第3期   页码 253-264 doi: 10.1007/s11705-014-1425-y

摘要: Theranostic platform, which is equipped with both diagnostic and therapeutic functions, is a promising approach in cancer treatment. From various nanotheranostics studied, iron oxide nanoparticles have advantages since IONPs have good biocompatibility and spatial imaging capability. This review is focused on the IONP-based nanotheranostics for cancer imaging and treatment. The most recent progress for applications of IONP nanotheranostics is summarized, which includes IONP-based diagnosis, magnetic resonance imaging (MRI), multimodal imaging, chemotherapy, hyperthermal therapy, photodynamic therapy, and gene delivery. Future perspectives and challenges are also outlined for the potential development of IONP based theranostics in clinical use.

关键词: theranostics     iron oxide nanoparticles     MRI     drug delivery     photothermal therapy     photodynamic therapy    

Preparation of Cu/ZrO

Xinmei LIU, Shaofen BAI, Huidong ZHUANG, Zifeng YAN

《化学科学与工程前沿(英文)》 2012年 第6卷 第1期   页码 47-52 doi: 10.1007/s11705-011-1170-4

摘要: Cu/ZrO catalysts for methanol synthesis from CO /H were respectively prepared by deposition coprecipitation (DP) and solid state reaction (SR) methods. There is an intimate interaction between copper and zirconia, which strongly affects the reduction property and catalytic performance of the catalysts. The stronger the interaction, the lower the reduction temperature and the better the performance of the catalysts. Surface area, pore structure and crystal structure of the catalysts are mainly controlled by preparation methods and alkalinity of synthesis system. The conversion of CO and selectivity of methanol are higher for DP catalysts than for SP catalysts.

关键词: Cu/ZrO2     methanol synthesis     deposition coprecipitation     solid state reaction     CO2/H2    

Nanoparticle-enhanced coolants in machining: mechanism, application, and prospects

《机械工程前沿(英文)》 2023年 第18卷 第4期 doi: 10.1007/s11465-023-0769-8

摘要: Nanoparticle-enhanced coolants (NPECs) are increasingly used in minimum quantity lubrication (MQL) machining as a green lubricant to replace conventional cutting fluids to meet the urgent need for carbon emissions and achieve sustainable manufacturing. However, the thermophysical properties of NPEC during processing remain unclear, making it difficult to provide precise guidance and selection principles for industrial applications. Therefore, this paper reviews the action mechanism, processing properties, and future development directions of NPEC. First, the laws of influence of nano-enhanced phases and base fluids on the processing performance are revealed, and the dispersion stabilization mechanism of NPEC in the preparation process is elaborated. Then, the unique molecular structure and physical properties of NPECs are combined to elucidate their unique mechanisms of heat transfer, penetration, and anti-friction effects. Furthermore, the effect of NPECs is investigated on the basis of their excellent lubricating and cooling properties by comprehensively and quantitatively evaluating the material removal characteristics during machining in turning, milling, and grinding applications. Results showed that turning of Ti‒6Al‒4V with multi-walled carbon nanotube NPECs with a volume fraction of 0.2% resulted in a 34% reduction in tool wear, an average decrease in cutting force of 28%, and a 7% decrease in surface roughness Ra, compared with the conventional flood process. Finally, research gaps and future directions for further applications of NPECs in the industry are presented.

关键词: nanoparticle-enhanced coolant     minimum quantity lubrication     biolubricant     thermophysical properties     turning     milling     grinding    

Cobalt nanoparticle decorated N-doped carbons derived from a cobalt covalent organic framework for oxygen

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1550-1560 doi: 10.1007/s11705-021-2104-4

摘要: The low cost and highly efficient construction of electrocatalysts has attracted significant attention owing to the use of clean and sustainable energy technologies. In this work, cobalt nanoparticle decorated N-doped carbons (Co@NC) are synthesized by the pyrolysis of a cobalt covalent organic framework under an inert atmosphere. The Co@NC demonstrates improved electrocatalytic capabilities compared to N-doped carbon without the addition of Co nanoparticles, indicating the important role of cobalt. The well-dispersed active sites (Co-Nx) and the synergistic effect between the carbon matrix and Co nanoparticles greatly enhance the electrocatalytic activity for the oxygen reduction reaction. In addition, the Co content has a significant effect on the catalytic activity. The resulting Co@NC-0.86 exhibits a superb electrocatalytic activity for the oxygen reduction reaction in an alkaline electrolyte in terms of the onset potential (0.90 V), half-wave potential (0.80 V) and the limiting current density (4.84 mA·cm–2), and a high selectivity, as well as a strong methanol tolerance and superior durability, these results are comparable to those of the Pt/C catalyst. Furthermore, the superior bifunctional activity of Co@NC-0.86 was also confirmed in a home-built Zn-air battery, signifying the possibility for application in electrode materials and in current energy conversion and storage devices.

关键词: cobalt embedment     N-doped carbons     covalent organic framework     oxygen reduction     Zn-air battery    

Microwave-assisted catalytic oxidation of gaseous toluene with a Cu-Mn-Ce/cordierite honeycomb catalyst

Longli Bo, Shaoyuan Sun

《化学科学与工程前沿(英文)》 2019年 第13卷 第2期   页码 385-392 doi: 10.1007/s11705-018-1738-3

摘要: A novel Cu-Mn-Ce/cordierite honeycomb catalyst was prepared by an incipient wetness method and the catalyst was characterized. The active ingredients were present as various spinel species of Cu, Mn and Ce oxides with different valences and they were unevenly dispersed over the surface of the catalyst. The catalytic oxidation of gaseous toluene was primarily investigated using a fixed bed reactor under microwave heating in the continuous flow mode. Under the optimal conditions of 6.7 wt-% loading of the active component, a bed temperature of 200°C, a flow rate of 0.12 m ·h and an initial concentration of toluene of 1000 mg·m , the removal and mineralization efficiencies of toluene were 98% and 70%, respectively. Thus the use of the microwave effectively improved the oxidation of toluene and this is attributed to dipole polarization and hotspot effects. After four consecutive cycles (a total of 1980 min), the Cu-Mn-Ce/cordierite catalyst still exhibited excellent catalytic activity and structural stability, and the toluene removal was higher than 90%. This work demonstrates the possibility of treating volatile organic compounds in exhaust gases by microwave-assisted catalytic oxidation.

关键词: microwave     catalytic oxidation     toluene     Cu-Mn-Ce/cordierite     mineralization    

Reconstruction of Cu–ZnO catalyst by organic acid and deactivation mechanism in liquid-phase hydrogenation

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1311-1319 doi: 10.1007/s11705-022-2281-9

摘要: A reconstructed Cu–ZnO catalyst with improved stability was fabricated by organic acid treatment method for the liquid-phase hydrogenation of dimethyl succinate to 1,4-butanediol. According to the characterization results of the fresh Cu–ZnO and reconstructed Cu–ZnO, three different forms of ZnO were suggested to be presented on the catalysts: ZnO having strong interaction with Cu species, ZnO that weakly interacted with Cu species and isolated ZnO. The first form of ZnO was believed to be beneficial to the formation of efficient active site Cu+, while the latter two forms of ZnO took the main responsibility for the deactivation of Cu–ZnO catalysts in the liquid-phase hydrogenation of diesters. The reconstruction of the Cu–ZnO catalyst by the organic acid treatment method resulted in a new Cu–ZnO catalyst with more Cu+ and less ZnO species that leads to deactivation. Furthermore, the deactivation mechanism of Cu–ZnO catalysts in liquid-phase diester hydrogenation in continuous flow system was proposed: the deposition of the polyesters on the catalysts via transesterification catalyzed by weakly interacted ZnO and isolated ZnO leads to the deactivation. These results provided meaningful instructions for designing highly efficient Cu–Zn catalysts for similar ester hydrogenation systems.

关键词: liquid phase     hydrogenation     Cu–ZnO     deactivation mechanism     1     4-butanediol     diester    

Cobalt-nanoparticle catalysts derived from zeolitic imidazolate framework@MXene composites for efficient

《化学科学与工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11705-023-2378-9

摘要: In this study, we synthesize a catalyst comprising cobalt nanoparticles supported on MXene by pyrolyzing a composite in a N2 environment. Specifically, the composite comprises a bimetallic Zn/Co zeolitic imidazole framework grown in situ on the outer surface of MXene. The catalytic efficiency of the catalyst is tested for the self-coupling of 4-methoxybenzylamine to produce value-added imine, where atmospheric oxygen (1 atm) is used as the oxidant. Based on the results, the catalyst displayed impressive catalytic activity, achieving 95.4% yield of the desired imine at 383 K for 8 h. Furthermore, the catalyst showed recyclability and tolerance toward benzylamine substrates with various functional groups. The outstanding performance of the catalyst is primarily attributed to the synergetic catalytic effect between the cobalt nanoparticles and MXene support, while also benefiting from the three-dimensional porous structure. Additionally, a preliminary investigation of potential reaction mechanisms is conducted.

关键词: MXene     sacrificial template     oxidative self-coupling     Co nanoparticles     imine    

Removal of Cu(II) and Fe(III) from aqueous solutions by dead sulfate reducing bacteria

Hong’en QUAN, He BAI, Yang HAN, Yong KANG, Jiao SUN

《化学科学与工程前沿(英文)》 2013年 第7卷 第2期   页码 177-184 doi: 10.1007/s11705-013-1324-7

摘要: The biosorption properties of dead sulfate reducing bacteria (SRB) for the removal of Cu(II) and Fe(III) from aqueous solutions was studied. The effects of the biosorbent concentration, the initial pH value and the temperature on the biosorption of Cu(II) and Fe(III) by the SRB were investigated. FTIR analysis verified that the hydroxyl, carbonyl and amine functional groups of the SRB biosorbent were involved in the biosorption process. For both Cu(II) and Fe(III), an increase in the SRB biosorbent concentration resulted in an increase in the removal percentage but a decrease in the amount of specific metal biosorption. The maximum specific metal biosorption was 93.25 mg?g at pH 4.5 for Cu(II) and 88.29 mg?g at pH 3.5 for Fe(III). The temperature did not have a significant effect on biosorption. In a binary metal system, the specific biosorption capacity for the target metal decreased when another metal ion was added. For both the single metal and binary metal systems, the biosorption of Cu(II) and Fe(III) onto a SRB biosorbent was better represented by a Langmuir model than by a Freundlich model.

关键词: sulfate reducing bacteria     biosorption     Cu(II)     Fe(III)    

Investigation of Cu leaching from municipal solid waste incinerator bottom ash with a comprehensive approach

Jun YAO, Wenbing LI, Fangfang XIA, Jing WANG, Chengran FANG, Dongsheng SHEN

《能源前沿(英文)》 2011年 第5卷 第3期   页码 340-348 doi: 10.1007/s11708-010-0131-9

摘要: Municipal solid waste incinerator (MSWI) bottom ash is often reused as a secondary construction material. This study used a comprehensive approach to characterize the leaching behavior of copper (Cu) from the MSWI bottom ash. The batch titration procedure was used to determine the acid neutralizing capacity and Cu leaching as a function of pH. The sequential extraction procedure (SEP) was adopted to analyze the speciation of Cu in the MSWI bottom ash. The metal speciation equilibrium model for surface and ground water (Visual MINTEQ) was used to evaluate the equilibrium of the leachates with the relative minerals, and to determine the speciation of the aqueous Cu in the leachates. Based on the multi-analysis of the results, Cu would be significantly released from the MSWI bottom ash when it is acidic. The Cu leaching pattern was not only affected by dissolved organic carbon, it was also limited by its speciation in the MSWI bottom ash. Furthermore, almost 100% of the aqueous Cu in the leachate was bound to organic matter in basic and neutral conditions, but mostly existed as Cu in an acidic condition. These findings provide an important insight into predicting the leaching behavior of Cu from the MSWI bottom ash, as well as its impact on the environment.

关键词: MSWI bottom ash     Cu leaching     batch titration procedure     SEP    

Approaching the binding between Cu(II) and aerobic granules by a modified titration and µ-XRF

Hongwei LUO,Longfei WANG,Zhonghua TONG,Hanqing YU,Guoping SHENG

《环境科学与工程前沿(英文)》 2016年 第10卷 第2期   页码 362-367 doi: 10.1007/s11783-015-0803-0

摘要: Interactions between metals and activated sludge can substantially affect the fate and transport of heavy metals in wastewater treatment plants. Therefore, it is important to develop a simple, fast and efficient method to elucidate the interaction. In this study, a modified titration method with a dynamic mode was developed to investigate the binding of Cu(II), a typical heavy metal, onto aerobic granules. The titration results indicated that pH and ionic strength both had a positive effect on the biosorption capacity of the granular sludge. The -XRF results demonstrated that the distribution of metals on the granular surface was heterogeneous, and Cu showed strong correlations and had the same “hot spots” positions with other metal ions (e.g., Ca, Mg, Fe etc.). Ion exchange and complexing were the main mechanisms for the biosorption of Cu(II) by aerobic granules. These results would be beneficial for better understanding of Cu(II) migration and its fate in wastewater treatment plants.

关键词: aerobic granules     Cu(II)     modified titration     µ-XRF analysis    

Eddy current measurement of the thickness of top Cu film of the multilayer interconnects in the integrated

Zilian QU,Yonggang MENG,Qian ZHAO

《机械工程前沿(英文)》 2015年 第10卷 第1期   页码 1-6 doi: 10.1007/s11465-015-0325-2

摘要:

This paper proposes a new eddy current method, named equivalent unit method (EUM), for the thickness measurement of the top copper film of multilayer interconnects in the chemical mechanical polishing (CMP) process, which is an important step in the integrated circuit (IC) manufacturing. The influence of the underneath circuit layers on the eddy current is modeled and treated as an equivalent film thickness. By subtracting this equivalent film component, the accuracy of the thickness measurement of the top copper layer with an eddy current sensor is improved and the absolute error is 3 nm for sampler measurement.

关键词: CMP     eddy current     multilayer wafer     Cu interconnects     equivalent unit    

Effect of Cu-ZSM-5 catalysts with different CuO particle size on selective catalytic oxidation of N,N-Dimethylformamide

《环境科学与工程前沿(英文)》 2022年 第16卷 第10期 doi: 10.1007/s11783-022-1557-0

摘要:

● A series of Cu-ZSM-5 catalysts were tested for DMF selective catalytic oxidation.

关键词: N     N-Dimethylformamide     Selective catalytic oxidation     Cu-ZSM-5     CuO particle size    

标题 作者 时间 类型 操作

Application of Cu nanoparticles as N32 base oil additives

Qiang HE, Jun YE, Hongzhao LIU, Jinling LI,

期刊论文

Performance of iron-air battery with iron nanoparticle-encapsulated C–N composite electrode

期刊论文

Effect of noble metal nanoparticle size on C–N bond cleavage performance in hydrodenitrogenation: a study

期刊论文

Iron oxide nanoparticle-based theranostics for cancer imaging and therapy

Xiaoqing REN,Hongwei CHEN,Victor YANG,Duxin SUN

期刊论文

Preparation of Cu/ZrO

Xinmei LIU, Shaofen BAI, Huidong ZHUANG, Zifeng YAN

期刊论文

Nanoparticle-enhanced coolants in machining: mechanism, application, and prospects

期刊论文

Cobalt nanoparticle decorated N-doped carbons derived from a cobalt covalent organic framework for oxygen

期刊论文

Microwave-assisted catalytic oxidation of gaseous toluene with a Cu-Mn-Ce/cordierite honeycomb catalyst

Longli Bo, Shaoyuan Sun

期刊论文

Reconstruction of Cu–ZnO catalyst by organic acid and deactivation mechanism in liquid-phase hydrogenation

期刊论文

Cobalt-nanoparticle catalysts derived from zeolitic imidazolate framework@MXene composites for efficient

期刊论文

Removal of Cu(II) and Fe(III) from aqueous solutions by dead sulfate reducing bacteria

Hong’en QUAN, He BAI, Yang HAN, Yong KANG, Jiao SUN

期刊论文

Investigation of Cu leaching from municipal solid waste incinerator bottom ash with a comprehensive approach

Jun YAO, Wenbing LI, Fangfang XIA, Jing WANG, Chengran FANG, Dongsheng SHEN

期刊论文

Approaching the binding between Cu(II) and aerobic granules by a modified titration and µ-XRF

Hongwei LUO,Longfei WANG,Zhonghua TONG,Hanqing YU,Guoping SHENG

期刊论文

Eddy current measurement of the thickness of top Cu film of the multilayer interconnects in the integrated

Zilian QU,Yonggang MENG,Qian ZHAO

期刊论文

Effect of Cu-ZSM-5 catalysts with different CuO particle size on selective catalytic oxidation of N,N-Dimethylformamide

期刊论文